

Canlı Webinar

CFD; KÜÇÜK BOŞLUKLARDA VE DAR KANALLARDA AKIŞLAR & SIZINTI SİMÜLASYONLARI

Sunucu: Ali Göktaş

MMO Ankara Şube Üye İlişkileri Birim Sorumlusu ali.goktas@mmo.or.tr

Konuşmacı: Sinan Soğancı

Makine Mühendisi, MBA Ürün Müdürü Akana Mühendislik

Webinar saat 18:00'da başlayacaktır...

Akana Mühendislik

- Milli savunma, havacılık ve uzay sanayii
 - Stratejik çözüm ortağı
 - Alt sistem tasarımcısı/tedarikçisi
- ~100 Personel
 - >40 Mühendis
- Alt sistem ve sistem seviyeleri
 - Müşteri gereksinimi odaklı tasarım
 - Mekanik, elektromekanik, hidrolik, pnömatik, kontrol, kimyasal süreçler...
 - CFD/FEA analizleri
 - Prototip üretim & test
 - Üretim & kalite kontrol
 - Devreye alma & teknik destek

HESAPLAMALI AKIŞKANLAR DİNAMİĞİ (CFD)

KÜÇÜK BOŞLUKLARDA VE DAR KANALLARDA AKIŞLAR & SIZINTI SİMÜLASYONLARI

<u>İçerik:</u>

- 1. Simülasyon Zorlukları (Challanges)
- 2. Faydalanılan Teknolojiler (Technologies)
- 3. Vaka Çalışmaları (Case Studies)

HESAPLAMALI AKIŞKANLAR DİNAMİĞİ (CFD)

KÜÇÜK BOŞLUKLARDA VE DAR KANALLARDA AKIŞLAR & SIZINTI SİMÜLASYONLARI

1. Simülasyon Zorlukları (Challanges)

- 1.1. Çok boyutluluk (Dimensionality)
- 1.2. Katı modelleme (CAD association)
- 1.3. Değişken boşluklar (Dynamic clearances)

1.1 Çok Boyutluluk (Dimensionality)

- In some engineering applications, performance relies on small clearances
 - to be modelled with very small tolerances in CAD
- Representation of such geometrical features in simulation
 - is obtained by using excessive number of computational cells
 - which significantly increases computing power & solver expectations

1.3. Değişken Boşluklar (Dynamic Clearances)

- A small clearance between two surfaces is not necessarily constant.
- Time and space dependency of clearances can be observed due to:

Motion

Deformation

Full closure!

HESAPLAMALI AKIŞKANLAR DİNAMİĞİ (CFD)

KÜÇÜK BOŞLUKLARDA VE DAR KANALLARDA AKIŞLAR & SIZINTI SİMÜLASYONLARI

2. Faydalanılan Teknolojiler (Technologies)

- 2.1. Çok boyutluluk
- 2.2. Katı modelleme
- 2.3. Değişken boşluklar
- → Gap ModelTM
- → SGGRTM (Sub-Grid Geometry Resolution)
- \rightarrow Moving Bodies & FSI

2.1. Gap Model[™]

Launching

Dimensionality issues → Extreme dimension ratios (microns/meters) Clearance flows → Thin channels down to sub-microns

Initially developed for screw compressors (2000's)

- By adding extra source term to momentum equation
- Based initially on Poiseuille flow assumption
- Further developed by analytical + empirical R&D

2.1. Gap Model[™]

How the Gap Model works;

- User enters min-max clearance interval
- Gaps are automatically detected.
- Local calculations are manipulated.

	- Name	Model #0
L	- Use Gap model	Standard Gap model
ł	- Min. clearance	1e-008
	– Max. clearance	0.02

- Very simple usage
- No need for 3rd party tools

2.1. Gap Model[™]

Resolve actual geometry \rightarrow focus on PHYSICS...

- No simplification, no de-featuring, no approximation
- Perform simulation with original CAD/FE geometries

Hybrid SGGR cell

- CAD/FE facets (green triangles)
- CFD cell facets (transparent surfaces)

SGGR

2.2. SGGR[™] Working Principle

- Import CAD geometry or FE mesh
- Mesh generation: Boolean subtraction of CAD/FE volume from CFD mesh
 CAD/FE border = CFD boundary
- Each CFD cell contains CAD/FE outside border
- ✓ Perfect matching of fluid/solid domains
- Accuracy in hydrodynamic loads & body motions/deformations
- ✓ Avoid manual efforts for coupling

2.2. Grid Adaptation

MÜHENDÍSLÍK VE TÍCARET A.Ş.

Geometry (Boundary Condition) based adaptation (courtesy of DSM, Mitsubishi Motors Corporation, USA)

2.3. Moving Bodies

- Not limited by contacts, intersections or full closure
- No mesh deformation
 - Mesh is renewed automatically
 - \circ $\,$ No user manipulation required

Motion Definition

- Translational & rotational velocities
- External forces & torques
- Rigid FSI \rightarrow wrt. aero/hydrodynamics forces
- External Coupling

(FEA / Optimization Software, Motion Capturing etc.)

2.3. Two-Way Strongly Coupled FSI

FSI: Fluid Structure Interaction

Artificial Aortic Heart Valve (Courtesy of RWTH Aachen University)

Living Heart Project **Blood Velocity Vector** Visualization

SGGR

'Co-Simulation with FEA' tool

 \rightarrow no need for 3rd party coupling codes

3. Vaka Çalışmaları (case studies from different industries)

Vaka		Endüstri / Uygulama	
3.1.	Heat transfer at lamellate coils	HVAC	
3.2.	Differential gearbox	Automotive / Lubrication	
3.3.	Screw compressor performance	Energy / Positive displacement machines	
3.4.	Motherboard assembly cooling	Electronics	
3.5.	Underwater & airborne launching	Defense	
3.6.	Hydrodynamic bearing for wind turbines	Energy / Lubrication	
3.7.	Clutch groove pattern	Automotive / Lubrication	

3.1. Case Study: HVAC

Heat transfer in lamellate coils

Objective:

Predict / validate thermal performance of lamellate coils used in HVAC systems

Relevance to the Topic...

- However,
 - Physical experiments are expensive
 - due to high cost of prototypes
 - Simulations are computationally costly
 - due to dimensionality problems
- Purpose:
 - HVAC system simulation
 - with less number of physical experiments
 - through affordable numerical simulations

Length x Height x Width 460mm x 200mm x 60mm

Modeling Alternatives

Resolution of spacings by grid elements (traditional approach) → Requires at least five cells between neighboring fins

Resolution of spacings by Gap Model:

→ Requires only one row of cells between neighboring fins

• Need for high tolerance geometry

• Excessive amount of computational cells

• Enormous computational power requirement

- <u>A common remedy</u>Separate solutions
- (eg. section 1 outlet results = section 2 inlet BC)

Coil Resolution by Gap Model

Results

	Grid Resolved	Gap Model	Comparison				
Results							
Grid Size [# of cells]	5.78 M	870k + 40k Gap Cells	85% less				
Pressure Drop [Pa]	8.0	8.1	1.2% deviation				
Outlet Temperature [°C]	15.5	15.2	1.9% deviation				
Heat Flux [W]	1380	1356	1.7% deviation				
User Experience							
Geometry	Enclosed gap volume resolved by grid elements	Distance between gap forming surfaces = clearance height	Simpler CAD can be used.				
Workflow	Import CAD Define BC Detailed grid generation	Import CAD Define BC Automatic Gap Cell detection	Less manual efforts Shorter project preparation				

3.2. Case Study: Automotive

Differential Gearbox (with rotating ball bearings)

In a gearbox

determine minimum oil level that ensures full wetting

by considering all rotating components

Computational Grid

What if we don't have the Gap Model?

At least 3 cells would be required in all thin channels.

➢ Between differential tooth (Average gap size is = 0,1 mm)
 With Gap Model → Average cell size in this area = 0,5 mm
 → Converted to 1200 Gap cells
 Without Gap Model → Necessary cell size in this area ≈ 0,03 mm
 → Necessary to refine the grid ≈ 15 times

 \rightarrow 1200 x 15³ \approx 4 million cells

➢ Between bearing rollers (Average gap size is = 0,01 mm)
 With Gap Model → Average cell size in this area = 0,1 mm
 → Converted to 2500 Gap cells
 Without Gap Model → Necessary cell size in this area ≈ 0,003 mm
 → Necessary to refine the grid ≈ 30 times
 → 2500 x 30³ ≈ 67,5 million cells

> In this case;

3700 Gap Cells instead of 71,5 million cells!

Computational Grid – Gap Cells

Computational Performance

• Hardware: 64 cores

(16 x Intel 17920)

• Computation time: 40 seconds/time step

Convergence requirements;

- Time step ≈ 1e-5 seconds
- 2-4 revolutions
- 2000 rpm \rightarrow ~0.1 seconds for **3 revolutions**
- 0.1 seconds of physical time;
 - 10000 time steps required
 - 4-5 days

Results

Instantaneous oil distributions

Results

3.3. Case Study: Energy

Screw Compressor Performance

Problem Description

0

Objective: Performance prediction

- of an oil-free 3/5 lobed twin screw compressor
- & experimental validation of numerical simulations

• Center to center \rightarrow 93.00 mm

0

- Male rotor
- Female rotor
- → 120.02 mm Ø

 \rightarrow 127.45 mm Ø

- → Interlobe: 160 µ
- Clearances \rightarrow Radial: 180 μ
 - → High Pressure End:120 µ

Computational Grid

Adaptations around housing & wall (minimum cell size: 3 mm)

• Total of ~1.25M computational cells

Results

CFD with Gap Model vs. Physical Experiments

- Simulation time: 21.8 hours (using 4 processors)
- Agreement of results
 Largest deviation observed among
 all parameters and rotation speeds
 ≈ 6.3%

3.4. Case Study: Electronics

Motherboard Assembly Cooling

tmmob makina mühendisleri odası ankara şubesi

Problem Description

□ Import assembly

- \Box Surfaces with small clearances \rightarrow Gap Cells
- \Box Surfaces in contact \rightarrow surface offsetting \rightarrow Gap Cells
- □ All steps can be done automatically.
- □ Gap Cells physics:
 - □ Momentum in gap is solved by Gap Model.
 - Gap heat transfer coefficient to account for thermal bridges

After Offset

Minimum Element Size: 0.0625 millimeters

Maximum Element Size: 9 millimeters

Temperature Distribution in Volume

Temperature Distribution on Surfaces

Temperature Distribution in Assembly

3.5. Case Study: Defence

Underwater & Airborne Launching

Problem Description

- Launching payloads (missiles, decoys etc.)
- Objective is to predict;

1800 1600 1400

1200

- Acceleration vs. time
- Directional stability
- Thrust & resistance forces

Underwater Launch

Underwater Launch

3.6. Case Study: Energy

Hydrodynamic Bearing (for wind turbines)

tmmob makina mühendisleri odası ankara şubesi

Problem Description – Boundary Conditions

- Oil flow through channels & clearances
- Variation of clearance due to
 - Wind turbine load characteristics
 - Oil hydrodynamics
- Simulation challenge
 - Resolve small & varying clearances

Motions & Clearance Variation

Radial clearance varying: 300±100µ

Clearance y+

0

Clearance y-

0

Main Cells & Gap Cells

Gap Cells

3.7. Case Study: Automotive

Clutch Groove Pattern (lubrication & torque conversion)

- Objective:
 - Simulating oil flow in radial direction between steel and friction plates
 - to investigate friction losses, torque conversion and lubrication
 - based on parameters
 - \rightarrow forces & torques on plates
 - \rightarrow inlet/outlet pressure drop

Simulation Setup

Meshing & Computational Performance

* The hardware configuration utilized is a desktop workstation with 24 cores (2 x 12 cores/processor, 3 GHz, Intel(), 64 GB RAM

Gap Cells

Gap Cells

tmmob makina mühendisleri odası ankara şubesi

Regular Cells

Cross section at waffle top

Cross section at middle height of groove

Sample Results

Sample Results

<u>Pressure & velocity distributions</u> Extracted from 'just before clutch' case Cross section at waffle top

Dinlediğiniz için teşekkürler...

